

2017-2018 Pest Management Alliance Grants

- Solicitation released January 3, 2017
- 6 Concepts received February 3

dpr

dpr

- Invitations to submit proposals February 24
- DPR will fund projects that focus on adoption of IPM practices in agricultural settings near schools.
- Proposal review will begin April 4

Department of Pesticide Regulation's Integrated Pest Management Research Symposium

Why: To showcase research funded by DPR to advance IPM in California

When: Tuesday, March 21, 2017, 9:00 AM-4:00 PM

Where: Sacramento State University, Modoc Hall, Willow Suites 2 & 3

More Details: 11 speakers scheduled, free parking, lunch provided

Save the date: Online registration coming soon!

dpr

Outline

- Research Grant Funding Priorities
- Critical dates
- The proposals
- Scores and discussion process

dpr			

Funding Priorities

- \$1.1 million dollars vailable
- DPR will consider proposals requesting \$50,000 to \$500,000.
- No tiers (no tears?)
- DPR expects to fund two to five projects.

Critical grant program dates

- 17 concepts were received September 30, 2016
- Applicants invited to submit proposals October 20, 2016
- 12 proposals were received December 15, 2016
 - 7 ag fumigant, 4 ag non fumigant, 1 urban
- Grants to be awarded, March 20, 2017
- Project start date, July 1, 2017

Alternatives to soil fumigants in California's fresh market carrot production

PI: Jörn Becker Organization: UC Riverside Amount Requested: \$185,255

Develop and demonstrate an IPM strategy that will replace soil fumigation in California's carrot production, using a resistant crop in rotation with carrot, new nematicides, or soil amendment.

Short title: Becker/Fumigant alts in Carrots

dpr

Integrated Approaches to Alfalfa Pest Management using Alternatives to Chlorpyrifos

PI: Claire Casteel Organization: UC Davis Amount Requested: \$265,415

Investigate the role of ethylene induction in alfalfa-aphid interactions, evaluate the use of ethylene inhibitors for aphid management in alfalfa, and compare production of susceptibility inducing volatiles among cultivars.

Short title: Casteel/Alfalfa Pest Management

Reducing risks associated with fumigation by improving current heat treatment and localized treatment

PI: Dong Hwan Choe Organization: UC Riverside Amount Requested: \$290,000

Incorporate volatile adjuvants (to lower lethal temperature) and volatile attractants (to pull termites to treated locations) to provide a method to make heat treatment for dry wood termites more effective with a minimal level of heat damage.

Short title: Choe/Termite Heat Treatment

Managing pathogens and weeds without soil fumigation

PI: Tom Gordon Organization: UC Davis Amount Requested: \$261,433

Assess the potential of the most promising available soil amendments to reduce the impact of disease and weeds and to buffer soils against pathogen introductions; and conduct an economic analysis that considers the cost of treatments and value of the crop.

Short title: Gordon/Managing Soil Pests Without Fumigation

Development of volatiles produced by *Muscodor albus* for control of soil-borne and postharvest diseases.

PI: Pam Marrone Organization: Marrone Bioinnovations Amount Requested: \$300,000

Investigate artificial mixes of volatiles produced by the fungus *Muscodor albus* for use as preplant and postharvest treatments, and determine conditions conducive to their efficacy against the soil borne pathogens in order to develop a new biopesticide.

Short title: Marrone/Muscador albus Volatiles

Beneficial Reuse of Saponin for Biological Control of Grape Powdery Mildew

PI: Pam Marrone Organization: Marrone Bioinnovations Amount Requested: \$260,012

Develop a fungicide product from the saponins found on the quinoa seed for use as a foliarly applied biofungicide for powdery mildew and other diseases, and as a seed treatment to control seedling diseases.

Short title: Marrone/Saponin Powdery Mildew Control

Development of site-specific management of soil pests using molecular quantification, remote sensing, and field scouting

PI: Alexander Putnam Organization: UC Riverside Amount Requested: \$486,916

Develop a zone-based precision fumigation system where fumigant is applied proportionally to the density of soilborne pathogens within a zone by quantifying and mapping levels of soil borne pathogens within selected fields to develop a site-specific preplant treatment plan.

Short title: Putnam/Precision Fumigation System

Improved IPM for key insect pests in the changing landscape of California citrus production

PI: Jay Rosenheim Organization: UC Davis Amount Requested: \$220,000

Use a combined experimental and ecoinformatics approach to adapt existing citrus IPM guidelines at the scale and pace needed for the range of conditions experienced in commercial fields; provide new/improved IPM recommendations for katydids and thrips.

Short title: Rosenheim/Citrus IPM

Soil fumigant/ag burning alternative: biosolarization with local crop waste for California low desert veg production

PI: Jim Stapleton Organization: UC-IPM Amount Requested: \$298,908

Use combinations of management approaches such as physical heating and biorational employment of farm-produced organic crop residue amendments to produce beneficial changes in soil microbial community composition to optimize pesticidal efficacy of solarization and biosolarization.

Short title: Stapleton/Biosolarization with Local Crop Waste

Integrating irrigation, nitrogen management, and insect control in celery production

PI: John Trumble Organization: UC Riverside Amount Requested: \$254,998

Use nitrogen fixing endophytic bacteria, and water soluble fertilizer through a drip irrigation system to reduce use of granular N and limit N runoff. Test alternative strategies and safer pesticides in lab and field studies to replace class I and II insecticides as well as current fumigation methods.

Short title: Trumble/Celery Management

New fruit fly attractants to reduce pesticide use in eradication program

PI: Spencer Walse Organization: USDA-ARS Amount Requested: \$75,000

Develop new species-specific chemical attractants for tephritid fruit fly pests with the goal of reducing the use of organophosphate pesticides in eradication programs.

Short title: Walse/Fruit Fly Attractants

Utility of Brassica crops for nematode suppression by biofumigation and co-cropping in walnut orchards

PI: Andreas Westphal Organization: UC Riverside Amount Requested: \$256,425

Test Brassica species for biofumigation as a pre-plant treatment, as well as in-orchard co-cropping of Brassica species.

Short title: Westphal/Biofumigation in Walnuts

- Todays Goals:

 • Identify the proposals PMAC feels are fundable.

 • Rank those proposals in order of preference.

 • Record strengths and concerns for all proposals.

Folder Contents: • Agenda • Ground Rules • PMAC Score totals

- Presentation
 Proposal Summaries
 Individual scores and comments

Tania Carlone, Associate Facilitator, CSUS Center for Collaborative Policy Corin Choppin, Assistant Facilitator, CSUS Center for Collaborative Policy

Scores									
Project	x R1 R2 R3 R4 R5 R6 R7 R8 R9 R10	R11 R12 R13 R14 R15 R16 R17 R18 Avg	High	Low	\$	cumu ative \$			
Becker carrot fumigant alts	3 3 1 5 2 2 10 9 8	3.83 2 2 1 3 1 1 7 6 3	1	10	\$182,255	\$182,255			
Westphal biofumigation	7 2 6 2 5 10 2 2 1	4.06	1	10	\$256,425	\$438,680			
Rosenheim citrus	2 6 8 3 12 1 3 4 3	4 1 8 5 1 6 5 1 5 ^{4.33}	1	12	\$220,000	\$658,680			
Gordon pathogens and weeds	4 5 3 7 7 3 6 7 7	5 4 10 9 1 4 1 4 7 5.22	1	10	\$261,433	\$920,113			
Walse fruit fly attractants	12 8 5 1 1 4 8 11 10 1	9 2 5 6 8 4 2 3 ^{5.56}	1	12	\$75,000	\$995,113			
Stapleton biosolarization	11 12 4 8 7 1 3 1 1	0 6 8 2 11 1 1 9 9 6.12	1	12	\$298,908	\$1,294,021.00			
Putnam soil pests	5 1 2 8 4 6 11 12 11	11 7 4 5 11 1 3 5 6.29	1	12	\$486,916	\$1,780,937.00			
Marrone volatiles	1 7 9 12 3 8 7 6 6	9 7 3 1 10 11 10 10 7.06	1	12	\$300,000	\$2,080,937.00			
Choe termite treatment	9 3 4 10 9 5 9 9 9	7 4 7 10 7 10 9 8 8 7.61	3	10	\$290,000	\$2,370,937.00			
Marrone saponin biocontrol	7 9 10 10 6 12 3 1 4 6	9 4 11 7 7 11 12 12 7.83	1	12	\$260,012	\$2,630,949.00			
Casteel, alfalfa aphids	10 10 10 9 10 9 5 5 5 8	12 12 7 7 5 5 5 11 8.06	5	12	\$265,415	\$2,896,364.00			
Trumble celery	6 11 6 6 11 11 12 8 12 1	2 11 10 4 12 9 9 11 2 9.06	2	12	\$254,998	\$3,151,362.00			